त्रिभुज का क्षेत्रफल : फार्मूला और उसके उदाहरण

Area of Triangle: Formulas With Examples

Area of Triangle: एक त्रिभुज एक बहुभुज है, 2-आयामी वस्तु है जिसमें 3 भुजाएँ और 3 शीर्ष होते हैं। त्रिकोणीय आकृतियों का क्षेत्रफल समस्याओं या प्रश्नों को हल करते समय उपयोग किए जाने वाले एक सरल फार्मूला का उपयोग करके निर्धारित किया जाता है। आपको त्रिभुज का क्षेत्रफल ज्ञात करने के लिए भुजाओं की लंबाई, त्रिभुज का प्रकार, त्रिभुज की ऊंचाई ज्ञात होनी चाहिए। त्रिकोण के क्षेत्रफल ज्ञात करने का फार्मूला क्या है? यह पोस्ट त्रिकोण के क्षेत्रफल से संबंधित आपके सभी प्रश्नों का उत्तर देगी।
Click here for Free Latest Pattern Questions of Arithmetic Maths 
Get free notes of Maths
Click here for SSC CGL Tier 2 Study material

Area of Triangle: Definition & Types of Triangle

एक त्रिभुज एक द्वि-आयामी बहुभुज होता है जिसमें 3 भुजाएँ और 3 कोण होते हैं। त्रिभुज का क्षेत्रफल त्रिभुज के अंदर व्याप्त क्षेत्र है। एक त्रिभुज 4 प्रकार का हो सकता है जो उसकी भुजाओं की लम्बाई या कोण के माप पर निर्भर करता है। त्रिकोण के 4 प्रकार हैं:

  1. समकोण त्रिभुज- जिसमें एक कोण 90 डिग्री का होता है।
  2. समद्विबाहु त्रिभुज- जिसमें 2 भुजाएँ समान हैं।
  3. समबाहु त्रिभुज- जिसमें तीनों भुजाएँ समान होती हैं और इसलिए प्रत्येक कोण 60° का होता है
  4. विषमबाहु त्रिभुज- जिसमें तीनों भुजाएँ असमान होती हैं।

Area of Triangle Formula

त्रिभुज के क्षेत्रफल के लिए साधारण फार्मूला 1/2 x आधार x लंबवत दिया गया है। क्षेत्रफल त्रिभुज के प्रकार पर निर्भर करेगा। आइए प्रत्येक प्रकार के त्रिभुज के लिए क्षेत्रफल ज्ञात करने के लिए इसका फार्मूला जान लेते हैं।
Click here for Free Latest Pattern Questions of Advance Maths 
Get free notes of Maths


Area of Right Angled Triangle Formula

समकोण त्रिभुज वह त्रिभुज होता है जिसमें एक कोण का माप 90° होता है। समकोण त्रिभुज की भुजाओं और कोणों के बीच का संबंध त्रिकोणमिति का आधार है। समकोण के विपरीत भुजा कर्ण कहलाती है। समकोण त्रिभुज का क्षेत्रफल ज्ञात करने का फार्मूला नीचे दिया गया है।

दिए गए समकोण त्रिभुज में, हमारे पास ‘h’ के रूप में लंबवत है और ‘b’ के रूप में आधार है, इसलिए समकोण त्रिभुज के क्षेत्रफल का फार्मूला कुछ इस प्रकार द्वारा दिया जा सकता है:

समकोण त्रिभुज का क्षेत्रफल = 1/2 x b x h

 
 


Area of Isosceles Triangle Formula

समद्विबाहु त्रिभुज में, आपके पास समान लंबाई की 2 भुजा होंगी। इसलिए, इस त्रिभुज के 2 कोण एक दूसरे के बराबर होंगे। नीचे दिए गए चित्र में, हमारे पास एक समद्विबाहु त्रिभुज है, जिसमें दो समान भुजाएँ हैं, ‘a’ और आधार ‘b’ के रूप में दर्शाया गया हैं। A से D तक एक लंबवत खींचा जाता है जो आधार को 2 बराबर भागों में विभाजित करता है।

इसलिए, सूत्र A = 1/2 x b x h द्वारा, समद्विबाहु त्रिभुज का क्षेत्रफल ज्ञात करने का फार्मूला निम्नानुसार निकाला जा सकता है:

समद्विबाहु त्रिभुज का क्षेत्रफल= 1/4 x b x √4a²-b²


Area of Equilateral Triangle

एक समबाहु त्रिभुज में, आपके पास समान लंबाई की 3 भुजा होंगी। इसलिए, इस त्रिभुज के सभी 3 कोण समान और 60 डिग्री के बराबर होंगे। नीचे दिए गए चित्र में, हमारे पास एक समबाहु त्रिभुज है जिसमें समान भुजाएँ ‘a’ के समान हैं। एक लंबवत A से D तक खींचा जाता है जो आधार को 2 बराबर भागों में विभाजित करता है।

इसलिए, सूत्र A = 1/2 x b x h द्वारा, समबाहु त्रिभुज का क्षेत्रफल ज्ञात करने का फार्मूला निम्नानुसार निकाला जा सकता है:

समबाहु त्रिभुज का क्षेत्रफल = √3/4 x a²


Area of a triangle by Heron’s Formula

विषमबाहु त्रिकोण एक ऐसा त्रिभुज है जिसमें सभी 3 भुजाएँ असमान होती हैं और कोई भी कोण 90 डिग्री का नहीं होता है। एक विषमबाहु त्रिभुज या अन्य किसी त्रिभुज का क्षेत्रफल ज्ञात करने के लिए, हम हेरॉन के फॉर्मूला का उपयोग करते हैं। एक त्रिकोण के क्षेत्रफल के बारे में हेरोन द्वारा दिए गए फार्मूला को हेरॉन के फॉर्मूला के रूप में भी जाना जाता है।

ऊपर दिए गए चित्र के अनुसार, विषमबाहु त्रिभुज की 3 भुजा ‘a’, ‘b’ और ’c’ के रूप में दिया गया है। हेरॉन का फॉर्मूला नीचे दिया गया है:

जहाँ a, b और c त्रिभुज की भुजाएँ हैं, और s = अर्ध-परिधि, यानी, त्रिभुज की आधी परिधि है। त्रिभुज की अर्ध-परिधि निम्न द्वारा दी गई है:


Area of Triangle: Examples

उदहारण 1: एक त्रिभुज का क्षेत्रफल ज्ञात कीजिए, जिसकी दो भुजा क्रमशः 8 सेमी और 11 सेमी हैं दी गयी हैं और परिधि 32 सेमी है।
समाधान: त्रिभुज की परिधि = 32 सेमी, a = 8 सेमी और b = 11 सेमी
तीसरी भुजा, c = 32 सेमी– (8 + 11) सेमी= 13 सेमी
So, 2s = 32, i.e., s = 16 सेमी,
s – a = (16 – 8) सेमी= 8 सेमी,
s – b = (16 – 11) सेमी= 5 सेमी,
s – c = (16 – 13) सेमी = 3 सेमी.
इसलिए, त्रिकोण का क्षेत्रफल =
√16 x 8 x 5 x 3 = 8√30 सेमी²
 
 
उदहारण 2: 14 सेमी के आधार और 5 सेमी की ऊंचाई के साथ एक समकोण त्रिभुज का क्षेत्रफल ज्ञात करें।
समाधान: समकोण त्रिभुज का क्षेत्रफल = 1/2 x b x h

इसलिए, समकोण त्रिभुज का क्षेत्रफल है
A= 1/2 x 14 x 5 = 35 सेमी²
 
 
 
 
 

Click here for more Maths Study Notes

Leave a comment

Your email address will not be published. Required fields are marked *